Optimizing ELBO
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Stocastic gradient-based optimization of ELBO

e Given a dataset with i.i.d. data, the ELBO objective is the sum (or average) of
individual-datapoint ELBO's:

n
Lo,4(D) = _ Los(xi) 9)
i=1
@ An important property of the ELBO, is that it allows joint optimization w.r.t. all

parameters (¢ and ) using stochastic gradient descent (SGD).

@ We can start out with random initial values of ¢ and 6 and stochastically optimize their
values until convergence.
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ELBO gradient w.r.t to model parameters: 6

Using the expression of Ly 4(x) from (5):

Lo,6(x) = Eq,(zIx)[log (ps(x, 2)) — log(qy(z|x))]
Unbiased gradients of the ELBO w.r.t. the generative model parameters 6 are simple to obtain:
VoLo,s(x) = VoEq,(zx)[log(po(x, 2)) — log(qs(z|x))]
= Eg, (21 [Va(log(po(x, 2)) — log(g4(z|x)))]

~ Vy(log(pe(x,z)) — log(q¢(zlx)))
= Vylog(py(x, 2))

Here z in the last two lines is a random sample from g4(z|x). Hence, Vylog(pe(x,z)) is a
simple Monte Carlo Estimate of VL 4(x). We will use this idea to train our model.
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Optimizing ELBO
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ELBO gradient w.r.t to variational parameters: ¢

Unbiased gradients w.r.t. the variational parameters ¢ are more difficult to obtain, since the
ELBO’s expectation is taken w.r.t. the distribution g,(z|x), which is a function of ¢. l.e., in
general:

VLo o(x) = VeEq,(z)x)[log(po(x, 2)) — log(qs(z|x))]
# Eq, (210 [Vo(log(po(x, z)) — log(qs(z]x)))]

In the case of continuous latent variables, we can use a reparameterization trick for
computing unbiased estimates of V4L 4(x), which we discuss now.
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Optimizing ELBO
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Reparameterization trick

For continuous latent variables and a differentiable encoder/inference and decoder/generative
model, the ELBO can be straightforwardly differentiated w.r.t. both ¢ and 6 through a change
of variables, also called the reparameterization trick.

Change of variables:

e First we express the random variable z ~ g4(z|x) as some differentiable and invertible
transformation of another random variable €

Z:g(€,¢,X) (10)

where the distribution of random variable € is independent of x or ¢.

o Hence now we have: Eg, . [f(2)] = Ey[f(2)]
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Optimizing ELBO
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ELBO gradient w.r.t to ¢ with change of variables

VLys(x) = VoEq, (20 [log(po(x, 2)) — log(qs(z|x))]
= VB, llog(po(x, 2)) — log(gs(z|x))]
= Ep([Ve(log(po(x, z)) — log(qys(z]x)))]
~ Vy(log(ps(x,z)) — log(qs(z|x)))
= —Vylog(qs(z|x))
Here

@ The second equation comes from change of variables z = g(¢, x, €) with random
sampling noise € ~ p(e).

@ Because ¢ and ¢ are independent, so E,)[-] and V4[] operators behave in a
commutative way in third equation.

@ In fourth equation we we take a monte carlo estimate of expectation by taking a single
sample of € and thus obtaining a single sample of z = g(¢, x, €).

@ Last equation shows the final unbiased estimate of: V4Lg 4(x).
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Optimizing ELBO
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Why we needed reparameterization trick

Original form Reparameterized form
f liurkpmpl f
} ~ an(zlx) vy z
) x Vof @ X

@ The variational parameters ¢ affect the objective f through the random variable
z ~ qy(z|x).

@ We wish to compute gradients V4f to optimize the objective with SGD. In the original
form (left), we cannot differentiate f w.r.t. ¢, because we cannot directly backpropagate
gradients through the random variable z.

@ We can 'externalize’ the randomness in z by re-parameterizing the variable as a
deterministic and differentiable function of ¢, x, and a newly introduced random variable
e. This allows us to backprop through z, and compute gradients V,f.
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Moving forward
°

What to do next

Where we are:
@ We have now established the idea of an encoder/inference model: g4(z|x) and a
decoder/generative model: pg(x|z) along with the latent variable distribution py(z).
@ We know we need reparameterization to be able to update variational parameters ¢ in
qo(2|x).
@ We know if we find optimal values of 6 and ¢ that maximizes ELBO, then:

o We are approximately maximizing marginal likelihood of data: py(x).
o We are minimizing the distribution distance (KL) between our proposed inference model
Gy (z|x) and the true inference model pg(z|x)

What we need now:

o Formally define what g4 (z|x), ps(x|z) and pg(z) distributions looks like. These
distributions will completely define the flexibility of the overall model.

@ How to compute ELBO for the chosen distributions.

@ These choices will lead to multiple types of variational autoencoders.
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